On a graph property generalizing planarity and flatness
نویسندگان
چکیده
We introduce a topological graph parameter σ(G), defined for any graph G. This parameter characterizes subgraphs of paths, outerplanar graphs, planar graphs, and graphs that have a flat embedding as those graphs G with σ(G) ≤ 1, 2, 3, and 4, respectively. Among several other theorems, we show that if H is a minor of G, then σ(H) ≤ σ(G), that σ(Kn) = n−1, and that if H is the suspension of G, then σ(H) = σ(G)+1. Furthermore, we show that μ(G) ≤ σ(G)+2 for each graph G. Here μ(G) is the graph parameter introduced by Colin de Verdière in [2].
منابع مشابه
Properties of products for flatness in the category of $S$-posets
This paper is devoted to the study of products of classes of right $S$-posets possessing one of the flatness properties and preservation of such properties under products. Specifically, we characterize a pomonoid $S$ over which its nonempty products as right $S$-posets satisfy some known flatness properties. Generalizing this results, we investigate products of right $S$-posets satisfying Condi...
متن کاملOn the planarity of a graph related to the join of subgroups of a finite group
Let $G$ be a finite group which is not a cyclic $p$-group, $p$ a prime number. We define an undirected simple graph $Delta(G)$ whose vertices are the proper subgroups of $G$, which are not contained in the Frattini subgroup of $G$ and two vertices $H$ and $K$ are joined by an edge if and only if $G=langle H , Krangle$. In this paper we classify finite groups with planar graph. ...
متن کاملPlanarity of Intersection Graph of submodules of a Module
Let $R$ be a commutative ring with identity and $M$ be an unitary $R$-module. The intersection graph of an $R$-module $M$, denoted by $Gamma(M)$, is a simple graph whose vertices are all non-trivial submodules of $M$ and two distinct vertices $N_1$ and $N_2$ are adjacent if and only if $N_1cap N_2neq 0$. In this article, we investigate the concept of a planar intersection graph and maximal subm...
متن کاملEvery class of $S$-acts having a flatness property is closed under directed colimits
Let $S$ be a monoid. In this paper, we prove every class of $S$-acts having a flatness property is closed underdirected colimits, it extends some known results. Furthermore thisresult implies that every $S$-act has a flatness cover if and only if it has a flatness precover.
متن کاملSOME GRAPH PARAMETERS ON THE COMPOSITE ORDER CAYLEY GRAPH
In this paper, the composite order Cayley graph Cay(G, S) is introduced, where G is a group and S is the set of all composite order elements of G. Some graph parameters such as diameter, girth, clique number, independence number, vertex chromatic number and domination number are calculated for the composite order Cayley graph of some certain groups. Moreover, the planarity of composite order Ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Combinatorica
دوره 29 شماره
صفحات -
تاریخ انتشار 2009